Emacs MIME Manual

by Lars Magne Ingebrigtsen

Copyright (©) 1998,99,2000, 2002 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with the Invariant Sections being none, with the Front-Cover
texts being “A GNU Manual”, and with the Back-Cover Texts as in (a) below. A copy of
the license is included in the section entitled “GNU Free Documentation License” in the
Emacs manual.

(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify this GNU
Manual, like GNU software. Copies published by the Free Software Foundation raise funds
for GNU development.”

This document is part of a collection distributed under the GNU Free Documentation
License. If you want to distribute this document separately from the collection, you can do
so by adding a copy of the license to the document, as described in section 6 of the license.

Emacs MIME 1

Emacs MIME

This manual documents the libraries used to compose and display MIME messages.

This is not a manual meant for users; it’s a manual directed at people who want to write
functions and commands that manipulate MIME elements.

MIME is short for Multipurpose Internet Mail Extensions. This standard is documented
in a number of RFCs; mainly RFC2045 (Format of Internet Message Bodies), RFC2046 (Me-
dia Types), RFC2047 (Message Header Extensions for Non-ASCII Text), RFC2048 (Regis-
tration Procedures), RFC2049 (Conformance Criteria and Examples). It is highly recom-
mended that anyone who intends writing MIME-compliant software read at least RFC2045
and RFC2047.

Emacs MIME Manual

Chapter 1: Interface Functions 3

1 Interface Functions

The mail-parse library is an abstraction over the actual low-level libraries that are
described in the next chapter.

Standards change, and so programs have to change to fit in the new mold. For instance,
RFC2045 describes a syntax for the Content-Type header that only allows ASCII characters
in the parameter list. RFC2231 expands on RFC2045 syntax to provide a scheme for
continuation headers and non-AscCII characters.

The traditional way to deal with this is just to update the library functions to parse
the new syntax. However, this is sometimes the wrong thing to do. In some instances it
may be vital to be able to understand both the old syntax as well as the new syntax, and
if there is only one library, one must choose between the old version of the library and the
new version of the library.

The Emacs MIME library takes a different tack. It defines a series of low-level libraries
(‘rfc2047.el’, ‘rfc2231.el’ and so on) that parses strictly according to the corresponding
standard. However, normal programs would not use the functions provided by these libraries
directly, but instead use the functions provided by the mail-parse library. The functions
in this library are just aliases to the corresponding functions in the latest low-level libraries.
Using this scheme, programs get a consistent interface they can use, and library developers
are free to create write code that handles new standards.

The following functions are defined by this library:

mail-header-parse-content-type string Function
Parse string, a Content-Type header, and return a content-type list in the following
format:

("type/subtype"
(attributel . valuel)
(attribute2 . value?2)

)

Here’s an example:

(mail-header-parse-content-type
"image/gif; name=\"b980912.gif\"")
= ("image/gif" (name . "b980912.gif"))

mail-header-parse-content-disposition string Function
Parse string, a Content-Disposition header, and return a content-type list in the
format above.

mail-content-type-get ct attribute Function
Returns the value of the given attribute from the content-type list ct.
(mail-content-type-get
’("image/gif" (name . "b980912.gif")) ’name)
= "b980912.gif"

4 Emacs MIME Manual

mail-header-encode-parameter param value Function
Takes a parameter string ‘param=value’ and returns an encoded version of it. This is
used for parameters in headers like ‘Content-Type’ and ‘Content-Disposition’.

mail-header-remove-comments string Function
Return a comment-free version of string.
(mail-header-remove-comments

"Gnus/5.070027 (Pterodactyl Gnus v0.27) (Finnish Landrace)")
= "Gnus/5.070027 "

mail-header-remove-whitespace string Function
Remove linear white space from string. Space inside quoted strings and comments is
preserved.

(mail-header-remove-whitespace
"image/gif; name=\"Name with spaces\"")
= "image/gif;name=\"Name with spaces\""

mail-header-get-comment string Function
Return the last comment in string.
(mail-header-get-comment

"Gnus/5.070027 (Pterodactyl Gnus v0.27) (Finnish Landrace)")
= "Finnish Landrace"

mail-header-parse-address string Function
Parse an address string string and return a list containing the mailbox and the plain-
text name.

(mail-header-parse-address
"Hrvoje Niksic <hniksic@srce.hr>")

= ("hniksic@srce.hr" . "Hrvoje Niksic")
mail-header-parse-addresses string Function
Parse string as a list of addresses and return a list of elements like the one described
above.

(mail-header-parse-addresses
"Hrvoje Niksic <hniksic@srce.hr>, Steinar Bang <sb@metis.no>")

= (("hniksic@srce.hr" . "Hrvoje Niksic")
("sb@metis.no" . "Steinar Bang"))
mail-header-parse-date string Function

Parse a date string and return an Emacs time structure.

mail-narrow-to-head Function
Narrow the buffer to the header section of the buffer. Point is placed at the beginning
of the narrowed buffer.

mail-header-narrow-to-field Function
Narrow the buffer to the header under point.

Chapter 1: Interface Functions 5

mail-encode-encoded-word-region start end Function
Encode the non-ASCII words in the region startto end. For instance, ‘Nave’ is encoded
as ‘=71s0-8859-17q7Na=EFve?=".

mail-encode-encoded-word-buffer Function
Encode the non-AscII words in the current buffer. This function is meant to be called
with the buffer narrowed to the headers of a message.

mail-encode-encoded-word-string string Function
Encode the words that need encoding in string, and return the result.
(mail-encode-encoded-word-string

"This is nave, baby")
= "This is =7is0-8859-17q7na=EFve,?= baby"

mail-decode-encoded-word-region start end Function
Decode the encoded words in the region startto end.

mail-decode-encoded-word-string string Function
Decode the encoded words in string and return the result.
(mail-decode-encoded-word-string
"This is =7is0-8859-17q7na=EFve,?= baby")
= "This is nave, baby"

Currently, mail-parse is an abstraction over ietf-drums, rfc2047, rfc2045 and
rfc2231. These are documented in the subsequent sections.

Emacs MIME Manual

Chapter 2: Basic Functions 7

2 Basic Functions

This chapter describes the basic, ground-level functions for parsing and handling. Cov-
ered here is parsing From lines, removing comments from header lines, decoding encoded
words, parsing date headers and so on. High-level functionality is dealt with in the next
chapter (see Chapter 3 [Decoding and Viewing], page 15).

2.1 rfc2045

RFC2045 is the “main” MIME document, and as such, one would imagine that there
would be a lot to implement. But there isn’t, since most of the implementation details are
delegated to the subsequent RFCs.

So ‘rfc2045.e1’ has only a single function:

rfc2045-encode-string parameter value Function
Takes a parameter and a value and returns a ‘param=value’ string. value will be
quoted if there are non-safe characters in it.

2.2 rfc2231

RFC2231 defines a syntax for the ‘Content-Type’ and ‘Content-Disposition’ headers.
Its snappy name is MIME Parameter Value and Encoded Word Extensions: Character Sets,
Languages, and Continuations.

In short, these headers look something like this:

Content-Type: application/x-stuff;
title*O*=us-ascii’en’This%20is%20even’20more’%20;
titlex1*=Y2A%2A%2Afun’2A%2A%2A%20;
titlex2="isn’t it!"

They usually aren’t this bad, though.

The following functions are defined by this library:

rfc2231-parse-string string Function
Parse a ‘Content-Type’ header string and return a list describing its elements.

(rfc2231-parse-string

"application/x-stuff;
titlexO*=us-ascii’en’This%20is%20even’,20more%20;
titlex1*=Y2A%2A%2Afun%2A%2A%2A%20;

title*2=\"isn’t it!\"")
= ("application/x-stuff"

(title . "This is even more ***xfun¥** isn’t it!"))

rfc2231-get-value ct attribute Function
Takes a list ct of the format above and returns the value of the specified attribute.

rfc2231-encode-string parameter value Function
Encode the string ‘parameter=value’ for inclusion in headers likes ‘Content-Type’
and ‘Content-Disposition’.

8 Emacs MIME Manual

2.3 ietf-drums

drums is an IETF working group that is working on the replacement for RFC822.
The functions provided by this library include:

ietf~-drums-remove-comments string Function
Remove the comments from string and return the result.

ietf~-drums-remove-whitespace string Function
Remove linear white space from string and return the result. Spaces inside quoted
strings and comments are left untouched.

ietf-drums-get-comment string Function
Return the last most comment from string.

ietf~-drums-parse-address string Function
Parse an address string and return a list of the mailbox and the plain text name.

ietf-drums-parse-addresses string Function
Parse string, containing any number of comma-separated addresses, and return a list
of mailbox/plain text pairs.

ietf~-drums-parse-date string Function
Parse the date string and return an Emacs time structure.

ietf-drums-narrow-to-header Function
Narrow the buffer to the header section of the current buffer.

2.4 rfc2047

RFC2047 (Message Header Extensions for Non-ASCII Text) specifies how non-AscII text
in headers are to be encoded. This is actually rather complicated, so a number of variables
are necessary to tweak what this library does.

The following variables are tweakable:

rfc2047-default-charset Variable
Characters in this charset should not be decoded by this library. This defaults to
‘is0-8859-1".

rfc2047-header-encoding-list Variable

This is an alist of header / encoding-type pairs. Its main purpose is to prevent
encoding of certain headers.

The keys can either be header regexps, or t.

The values can be either nil, in which case the header(s) in question won’t be encoded,
or mime, which means that they will be encoded.

Chapter 2: Basic Functions 9

rfc2047-charset-encoding-alist Variable
RFC2047 specifies two forms of encoding—Q (a Quoted-Printable-like encoding) and
B (base64). This alist specifies which charset should use which encoding.

rfc2047-encoding-function-alist Variable
This is an alist of encoding / function pairs. The encodings are Q, B and nil.

rfc2047-qg-encoding-alist Variable
The Q encoding isn’t quite the same for all headers. Some headers allow a narrower
range of characters, and that is what this variable is for. It’s an alist of header regexps
and allowable character ranges.

rfc2047-encoded-word-regexp Variable
When decoding words, this library looks for matches to this regexp.

Those were the variables, and these are the functions:

rfc2047-narrow-to-field Function
Narrow the buffer to the header on the current line.

rfc2047-encode-message-header Function
Should be called narrowed to the header of a message. Encodes according to rfc2047-
header-encoding-alist.

rfc2047-encode-region start end Function
Encodes all encodable words in the region start to end.

rfc2047-encode-string string Function
Encode string and return the result.

rfc2047-decode-region start end Function
Decode the encoded words in the region start to end.

rfc2047-decode-string string Function
Decode string and return the result.

2.5 time-date

While not really a part of the MIME library, it is convenient to document this library
here. It deals with parsing ‘Date’ headers and manipulating time. (Not by using tesseracts,
though, I'm sorry to say.)

These functions convert between five formats: a date string, an Emacs time structure, a
decoded time list, a number of seconds, and a day number.

The functions have quite self-explanatory names, so the following just gives an overview
of which functions are available.

10

Emacs MIME Manual

(parse-time-string "Sat Sep 12 12:21:54 1998 +0200")
= (54 21 12 12 9 1998 6 nil 7200)

(date-to-time "Sat Sep 12 12:21:54 1998 +0200")
= (13818 19266)

(time-to-seconds ’ (13818 19266))
= 905595714.0

(seconds-to-time 905595714.0)
= (13818 19266 0)

(time-to-day ’ (13818 19266))
= 729644

(days-to-time 729644)
= (961933 65536)

(time-since ’ (13818 19266))
= (0 430)

(time-less-p ’(13818 19266) °’(13818 19145))
= nil

(subtract-time ’(13818 19266) ’(13818 19145))
= (0 121)

(days-between "Sat Sep 12 12:21:54 1998 +0200"
"Sat Sep 07 12:21:54 1998 +0200")
= b

(date-leap-year-p 2000)
=t

(time-to-day-in-year ’(13818 19266))
= 255

And finally, we have safe-date-to-time, which does the same as date-to-time, but

returns a zero time if the date is syntactically malformed.

2.6 gp

This library deals with decoding and encoding Quoted-Printable text.

Very briefly explained, QP encoding means translating all 8-bit characters (and lots of

control characters) into things that look like ‘=EF’; that is, an equal sign followed by the
byte encoded as a hex string. It is defined in RFC 2045.

The following functions are defined by the library:

Chapter 2: Basic Functions 11

quoted-printable-decode-region from to &optional coding-system Command
QP-decode all the encoded text in the region. If coding-system is non-nil, decode bytes
into characters with that coding-system. It is probably better not to use coding-
system; instead decode into a unibyte buffer, decode that appropriately and then
interpret it as multibyte.

quoted-printable-decode-string string &optional coding-system Function
Return a QP-encoded copy of string. If coding-system is non-nil, decode bytes into
characters with that coding-system.

quoted-printable-encode-region from to &optional fold class Command
QP-encode all the region. If fold is non-nil, fold lines at 76 characters, as required by
the RFC. If class is non-nil, translate the characters not matched by that regexp class,
which should be in the form expected by skip-chars-forward and should probably not
contain literal eight-bit characters. Specifying class makes sense to do extra encoding
in header fields.

If variable mm-use-ultra-safe-encoding is defined and non-nil, fold lines uncondition-
ally and encode ‘From ’ and ‘-’ at the start of lines..

quoted-printable-encode-string string Function
Return a QP-encoded copy of string.

2.7 base64

Base64 is an encoding that encodes three bytes into four characters, thereby increasing
the size by about 33%. The alphabet used for encoding is very resistant to mangling during
transit. See section “Base 64 Encoding” in The Emacs Lisp Reference Manual.

2.8 binhex

Binhex is an encoding that originated in Macintosh environments. The following function
is supplied to deal with these:

binhex-decode-region start end &optional header-only Function
Decode the encoded text in the region start to end. If header-only is non-nil, only
decode the ‘binhex’ header and return the file name.

2.9 uudecode

Uuencoding is probably still the most popular encoding of binaries used on Usenet,
although Base64 rules the mail world.

The following function is supplied by this package:

uudecode-decode-region start end &optional file-name Function
Decode the text in the region start to end. If file-name is non-nil, save the result to
file-name.

12 Emacs MIME Manual

2.10 rfc1843

RFC1843 deals with mixing Chinese and ASCII characters in messages. In essence,
RFC1843 switches between Ascil and Chinese by doing this:

This sentence is in ASCII.
The next sentence is in GB. {<:Ky2;S{#,NpJ)16HK!# }Bye.

Simple enough, and widely used in China.

The following functions are available to handle this encoding:

rfc1843-decode-region start end Function
Decode HZ-encoded text in the region start to end.

rfc1843-decode-string string Function
Decode the HZ-encoded string and return the result.

2.11 mailcap

As specified by RFC 1524, MIME-aware message handlers parse mailcap files from a
default list, which can be overridden by the MAILCAP environment variable. These describe
how elements are supposed to be displayed. Here’s an example file:

image/*; gimp -8 s
audio/wav; wavplayer %s

This says that all image files should be displayed with gimp, and that WAVE audio files

should be played by wavplayer.

The mailcap library parses such files, and provides functions for matching types.

mailcap-mime-data Variable
This variable is an alist of alists containing backup viewing rules for MIME types.
These are overridden by rules for a type found in mailcap files. The outer alist is
keyed on the major content-type and the inner alists are keyed on the minor content-
type (which can be a regular expression).
For example:
(("application"
("octet-stream"
(viewer . mailcap-save-binary-file)
(non-viewer . t)
(type . "application/octet-stream"))
("plain"
(viewer . view-mode)
(test fboundp ’view-mode)
(type . "text/plain")))

mailcap-default-mime-data User Option
This variable is the default value of mailcap-mime-data. It exists to allow setting
the value using Custom. It is merged with values from mailcap files by mailcap-
parse-mailcaps.

Chapter 2: Basic Functions 13

Although it is not specified by the RFC, MIME tools normally use a common means
of associating file extensions with defualt MIME types in the absence of other information
about the type of a file. The information is found in per-user files ‘*/.mime.types’ and
system ‘mime.types’ files found in quasi-standard places. Here is an example:

application/x-dvi dvi
audio/mpeg mpga mpega mp2 mp3
image/jpeg jpeg jrg jpe

mailcap-mime-extensions Variable
This variable is an alist MIME types keyed by file extensions. This is overridden by
entries found in ‘mime.types’ files.

mailcap-default-mime-extensions User Option
This variable is the default value of mailcap-mime-extensions. It exists to al-
low setting the value using Custom. It is merged with values from mailcap files by
mailcap-parse-mimetypes.

Interface functions:

mailcap-parse-mailcaps &optional path force Function
Parse all the mailcap files specified in a path string path and merge them with the
values from mailcap-mime-data. Components of path are separated by the path-
separator character appropriate for the system. If force is non-nil, the files are
re-parsed even if they have been parsed already. If path is omitted, use the value
of environment variable MAILCAPS if it is set; otherwise (on GNU and Unix) use the
path defined in RFC 1524, plus ‘/usr/local/etc/mailcap’.

mailcap-parse-mimetypes &optional path force Function
Parse all the mimetypes specified in a path string path and merge them with the values
from mailcap-mime-extensions. Components of path are separated by the path-
separator character appropriate for the system. If path is omitted, use the value of
environment variable MIMETYPES if set; otherwise use a default path consistent with
that used by mailcap-parse-mailcaps. If force is non-nil, the files are re-parsed
even if they have been parsed already.

mailcap-mime-info string &optional request Function
Gets the viewer command for content-type string. nil is returned if none is found.
Expects string to be a complete content-type header line.

If request is non-nil it specifies what information to return. If it is nil or the empty
string, the viewer (second field of the mailcap entry) will be returned. If it is a
string, then the mailcap field corresponding to that string will be returned (‘print’,
‘description’, whatever). If it is a number, all the information for this viewer is
returned. If it is all, then all possible viewers for this type is returned.

mailcap-mime-types Function
This function returns a list of all the defined media types.

14 Emacs MIME Manual

mailcap-extension-to-mime extension Function
This function returns the content type defined for a file with the given extension.

Chapter 3: Decoding and Viewing

3 Decoding and Viewing

This chapter deals with decoding and viewing MIME messages on a higher level.

15

The main idea is to first analyze a MIME article, and then allow other programs to do

things based on the list of handles that are returned as a result of this analysis.

3.1 Dissection

The mm-dissect-buffer is the function responsible for dissecting a MIME article. If
given a multipart message, it will recursively descend the message, following the structure,

and return a tree of MIME handles that describes the structure of the message.

3.2 Handles

A MIME handle is a list that fully describes a MIME component.

The following macros can be used to access elements from the handle argument:

mm-handle-buffer handle
Return the buffer that holds the contents of the undecoded MIME part.

mm-handle-type handle
Return the parsed ‘Content-Type’ of the part.

mm-handle-encoding handle
Return the ‘Content-Transfer-Encoding’ of the part.

mm-handle-undisplayer handle

Macro

Macro

Macro

Macro

Return the function that can be used to remove the displayed part (if it has been

displayed).

mm-handle-set-undisplayer handle function
Set the undisplayer function for the part to function.

mm-handle-disposition
Return the parsed ‘Content-Disposition’ of the part.

mm-handle-disposition
Return the description of the part.

mm-get-content-id id
Returns the handle(s) referred to by id, the ‘Content-ID’ of the part.

Macro

Macro

Macro

Macro

16 Emacs MIME Manual

3.3 Display

Functions for displaying, removing and saving. In the descriptions below, ‘the part’
means the MIME part represented by the handle argument.

mm-display-part handle &optional no-default Function
Display the part. Return nil if the part is removed, inline if it is displayed inline
or external if it is displayed externally. If no-default is non-nil, the part is not
displayed unless the MIME type of handle is defined to be displayed inline or there is
an display method defined for it; i.e. no default external method will be used.

mm-remove-part handle Function
Remove the part if it has been displayed.

mm-inlinable-p handle Function
Return non-nil if the part can be displayed inline.

mm-automatic-display-p handle Function
Return non-nil if the user has requested automatic display of the MIME type of the
part.

mm-destroy-part handle Function

Free all the resources used by the part.

mm-save-part handle Function
Save the part to a file. The user is prompted for a file name to use.

mm-pipe-part handle Function
Pipe the part through a shell command. The user is prompted for the command to
use.

mme-interactively-view-part handle Function

Prompt for a mailcap method to use to view the part and display it externally using
that method.

3.4 Customization

The display of MIME types may be customized with the following options.

mm-inline-media-tests User Option
This is an alist where the key is a MIME type, the second element is a function to
display the part inline (i.e., inside Emacs), and the third element is a form to be
evaled to say whether the part can be displayed inline.

This variable specifies whether a part can be displayed inline, and, if so, how to do
it. It does not say whether parts are actually displayed inline.

Chapter 3: Decoding and Viewing 17

mm-inlined-types User Option
This, on the other hand, says what types are to be displayed inline, if they satisfy the
conditions set by the variable above. It’s a list of MIME media types.

mm-automatic-display User Option
This is a list of types that are to be displayed “automatically”, but only if the above
variable allows it. That is, only inlinable parts can be displayed automatically.

mm-attachment-override-types User Option
Some MIME agents create parts that have a content-disposition of ‘attachment’. This
variable allows overriding that disposition and displaying the part inline. (Note that
the disposition is only overridden if we are able to, and want to, display the part
inline.)

mm-discouraged-alternatives User Option
List of MIME types that are discouraged when viewing ‘multipart/alternative’.
Viewing agents are supposed to view the last possible part of a message, as that is
supposed to be the richest. However, users may prefer other types instead, and this
list says what types are most unwanted. If, for instance, ‘text/html’ parts are very
unwanted, and ‘text/richtech’ parts are somewhat unwanted, then the value of this
variable should be set to:

("text/html" "text/richtext")

mm-inline-large-images-p User Option
When displaying inline images that are larger than the window, XEmacs does not
enable scrolling, which means that you cannot see the whole image. To prevent this,
the library tries to determine the image size before displaying it inline, and if it doesn’t
fit the window, the library will display it externally (e.g. with ‘ImageMagick’ or ‘xv’).
Setting this variable to t disables this check and makes the library display all inline
images as inline, regardless of their size.

mme-inline-override-p User Option
mm-inlined-types may include regular expressions, for example to specify that all
‘text/.* parts be displayed inline. If a user prefers to have a type that matches such
a regular expression be treated as an attachment, that can be accomplished by setting
this variable to a list containing that type. For example assuming mm-inlined-types
includes ‘text/.*’, then including ‘text/html’ in this variable will cause ‘text/html’
parts to be treated as attachments.

3.5 New Viewers

Here’s an example viewer for displaying ‘text/enriched’ inline:
(defun mm-display-enriched-inline (handle)
(let (text)
(with-temp-buffer
(mm-insert-part handle)

18 Emacs MIME Manual

(save-window-excursion
(enriched-decode (point-min) (point-max))
(setq text (buffer-string))))
(mm-insert-inline handle text)))
We see that the function takes a MIME handle as its parameter. It then goes to a
temporary buffer, inserts the text of the part, does some work on the text, stores the result,
goes back to the buffer it was called from and inserts the result.

The two important helper functions here are mm-insert-part and mm-insert-inline.
The first function inserts the text of the handle in the current buffer. It handles charset
and/or content transfer decoding. The second function just inserts whatever text you tell
it to insert, but it also sets things up so that the text can be “undisplayed’ in a convenient
manner.

Chapter 4: Composing 19

4 Composing

Creating a MIME message is boring and non-trivial. Therefore, a library called mml has
been defined that parses a language called MML (MIME Meta Language) and generates
MIME messages.

The main interface function is mml-generate-mime. It will examine the contents of the
current (narrowed-to) buffer and return a string containing the MIME message.

4.1 Simple MML Example

Here’s a simple ‘multipart/alternative’:

<#multipart type=alternative>
This is a plain text part.
<#tpart type=text/enriched>
<center>This is a centered enriched part</center>
<#/multipart>
After running this through mml-generate-mime, we get this:

Content-Type: multipart/alternative; boundary="=-=-="

This is a plain text part.

Content-Type: text/enriched

<center>This is a centered enriched part</center>

4.2 MML Definition

The MML language is very simple. It looks a bit like an SGML application, but it’s not.

The main concept of MML is the part. Each part can be of a different type or use a
different charset. The way to delineate a part is with a ‘<#part ...>’ tag. Multipart parts
can be introduced with the ‘<#multipart ...>’ tag. Parts are ended by the ‘<#/part>’
or ‘<#/multipart>’ tags. Parts started with the ‘<#part ...>’ tags are also closed by the
next open tag.

There’s also the ‘<#external ...>" tag. These introduce ‘external/message-body’
parts.

Each tag can contain zero or more parameters on the form ‘parameter=value’. The val-

ues may be enclosed in quotation marks, but that’s not necessary unless the value contains
white space. So ‘filename=/home/user/#hello$ yes’ is perfectly valid.

20 Emacs MIME Manual

The following parameters have meaning in MML; parameters that have no meaning are
ignored. The MML parameter names are the same as the MIME parameter names; the
things in the parentheses say which header it will be used in.

‘type’ The MIME type of the part (‘Content-Type’).

‘filename’
Use the contents of the file in the body of the part (‘Content-Disposition’).

‘charset’ The contents of the body of the part are to be encoded in the character set
speficied (‘Content-Type’).

‘name’ Might be used to suggest a file name if the part is to be saved to a file
(‘Content-Type’).

‘disposition’
Valid values are ‘inline’ and ‘attachment’ (‘Content-Disposition’).

‘encoding’
Valid values are ‘7bit’, ‘8bit’, ‘quoted-printable’ and ‘base64’
(‘Content-Transfer-Encoding’).

‘description’
A description of the part (‘Content-Description’).

‘creation-date’
RFC822 date when the part was created (‘Content-Disposition’).

‘modification-date’
RFC822 date when the part was modified (‘Content-Disposition’).

‘read-date’
RFC822 date when the part was read (‘Content-Disposition’).

‘size’ The size (in octets) of the part (‘Content-Disposition’).
Parameters for ‘application/octet-stream’

‘type’ Type of the part; informal—meant for human readers (‘Content-Type’).
Parameters for ‘message/external-body”:

‘access-type’
A word indicating the supported access mechanism by which the file may
be obtained. Values include ‘ftp’, ‘anon-ftp’, ‘tftp’, ‘localfile’, and
‘mailserver’. (‘Content-Type’.)

‘expiration’
The RFC822 date after which the file may no longer be fetched.
(‘Content-Type’.)

‘size’ The size (in octets) of the file. (‘Content-Type’.)

‘permission’
Valid values are ‘read’ and ‘read-write’ (‘Content-Type’).

Chapter 4: Composing 21

4.3 Advanced MML Example

Here’s a complex multipart message. It’s a ‘multipart/mixed’ that contains many parts,
one of which is a ‘multipart/alternative’.

<#multipart type=mixed>

<#part type=image/jpeg filename="/rms.jpg disposition=inline>
<#multipart type=alternative>

This is a plain text part.

<#tpart type=text/enriched name=enriched.txt>
<center>This is a centered enriched part</center>
<#/multipart>

This is a new plain text part.

<#tpart disposition=attachment>

This plain text part is an attachment.
<#/multipart>

And this is the resulting MIME message:
Content-Type: multipart/mixed; boundary="=-=-="

Content-Type: image/jpeg;
filename=""/rms. jpg"
Content-Disposition: inline;
filename=""/rms. jpg"
Content-Transfer-Encoding: base64

/93j/4AAQSkZIRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwc JCQgKDBANDASLDBKSEwSUHROE
Hh0aHBwgJC4nICIsIxwcKDcpLDAxXNDQOHyc5PTgyPC4zNDL/wAALCAAwADABAREA/8QAHWAA
AQUBAQEBAQEAAAAAAAAAAAECAWQFBgcICQoL/8QAtRAAAGEDAWIEAWUFBAQAAAF9AQIDAAQR
BRIhMUEGE1FhBy JxFDKBkaEIIOKxwRVSOfAkM2JyggkKFhcYGRo1JicoKSoONTY30Dk6QORF
RkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXgDhIWGh4iJipKT1JWW15iZmgK jpKWmp6ip
qrKztLW2t7i5usLDxMXGx8jJytLTINXW19jZ2uHi4+T15uf 06erx8vP09fb3+Pn6/90ACAEB
AAA/AQ/rifFHj1dNuGsrDaOqcSSHkA+gHrXKw+LtWLrMb+RgTyhbr+HSug07xNqVOfQtZrNI
AyiaE/NuBPOOOPOrvRNES880KOC8TbXXGCv1FPqjrF4LDR7ubL7SkTFT/ALWOP1xXgTuXfc7E
sx6nuabrwp4IvvEM8chCxWx0dzn7wz6V9AaB4S07wOp5itowOrDLSYS5Pt9K43x066P4xs71m
2Q0X1iGCbA4y0VJI9+1aYORkdK4341yNH4ahCnG66VTIN 15 JFbPAX0MS43M4VQE5/yr2vSpLlow
5ZW8d1CZ8KFX jOPX0/mK6rSPEGt3Angu44fNEReHYNvIH3TzXDeKNO8RX+kSX20uZkicTIOc
L+g7E810ulF jpVtv3bwgB3HJyK5L4quY/C9sVxk31ij/xx6850u7timtp/wD1pEw3An3Jr3Dw
34gsbWza4nB1hC5LDsaW6+IFgupQyCF3iHH7gA7c9R9ay7zx6t7aX9 jHC4smhfBkGCvHGErm
tLQ7hbnRrV1GPkAP1x1/Hr+Ncr8Vzjwrbf8AX6v/AKA9eQRyY1Qk8Yx9KE6XTNbkgia2¢ciSIn
7Tp5Ga9AtteOLTLKO6it417dVRFJIDcZ4PvEN+JVEMFObILVGXJLSZ4zkjivRPDaeX4b0OSHOTC
pOf fmua+KkbS+GLVUGTItT/0B68eeIpIFYjB70+00VXyoOM9+M1leaWeCLzHPYHGO/NVWvJJm
jQ8KGH1INfQWhXSXmh2c8eArRLwO3HSv/2Q==

22 Emacs MIME Manual

Content-Type: multipart/alternative; boundary="==-=-="

This is a plain text part.

Content-Type: text/enriched;
name="enriched.txt"

<center>This is a centered enriched part</center>

This is a new plain text part.

Content-Disposition: attachment

This plain text part is an attachment.

4.4 Charset Translation

During translation from MML to MIME, for each MIME part which has been composed
inside Emacs, an appropriate MIME charset has to be chosen.

If you are running a non-Mule XEmacs, or Emacs in unibyte mode', this process is
simple: if the part contains any non-ASCII (8-bit) characters, the MIME charset given by
mail-parse-charset (a symbol) is used. (Never set this variable directly, though. If you
want to change the default charset, please consult the documentation of the package which
you use to process MIME messages. See section “Various Message Variables” in Message
Manual, for example.) If there are only AscCII characters, the MIME charset ‘US-ASCII’ is
used, of course.

In a normal (multibyte) Emacs session, a list of coding systems is derived that can
encode the message part’s content and correspond to MIME charsets (according to their
mime-charset property). This list is according to the normal priority rules and the highest
priority one is chosen to encode the part. If no such coding system can encode the part’s
contents, they are split into several parts such that each can be encoded with an appropriate

I Deprecated!

Chapter 4: Composing 23

coding system/MIME charset.? Note that this procedure works with any correctly-defined
coding systems, not just built-in ones. Given a suitably-defined UTF-8 coding system—one
capable of encoding the Emacs charsets you use—it is not normally necessary to split a part
by charset.

It isn’t possible to do this properly in XEmacs/Mule. Instead, a list of the Mule charsets
used in the part is obtained, and the corresponding MIME charsets are determined by lookup
in mm-mime-mule-charset-alist. If the list elements all correspond to a single MIME
charset, that is used to encode the part. Otherwise, the part is split as above.

4.5 Conversion

A (multipart) MIME message can be converted to MML with the mime-to-mml function.
It works on the message in the current buffer, and substitutes MML markup for MIME
boundaries. Non-textual parts do not have their contents in the buffer, but instead have
the contents in separate buffers that are referred to from the MML tags.

An MML message can be converted back to MIME by the mml-to-mime function.

These functions are in certain senses “lossy” —you will not get back an identical message
if you run MIME-TO-MML and then MML-TO-MIME. Not only will trivial things like the order
of the headers differ, but the contents of the headers may also be different. For instance,
the original message may use base64 encoding on text, while MML-TO-MIME may decide to
use quoted-printable encoding, and so on.

In essence, however, these two functions should be the inverse of each other. The resulting
contents of the message should remain equivalent, if not identical.

2 The part can only be split at line boundaries, though—if more than one MIME charset is required to
encode a single line, it is not possible to encode the part.

24

Emacs MIME Manual

Chapter 5: Standards 25

5 Standards

The Emacs MIME library implements handling of various elements according to a (some-
what) large number of RFCs, drafts and standards documents. This chapter lists the
relevant ones. They can all be fetched from ‘http://quimby.gnus.org/notes/ .

RFC822
STD11

RFC1036
RFC1524

RFC2045
RFC2046
RFC2047
RFC2048
RFC2049
RFC2231

RFC1843

Standard for the Format of ARPA Internet Text Messages.
Standard for Interchange of USENET Messages

A User Agent Configuration Mechanism For Multimedia Mail Format Informa-
tion

Format of Internet Message Bodies

Media Types

Message Header Extensions for Non-ASCII Text
Registration Procedures

Conformance Criteria and Examples

MIME Parameter Value and Encoded Word Extensions: Character Sets, Lan-
guages, and Continuations

HZ - A Data Format for Exchanging Files of Arbitrarily Mixed Chinese and
ASCII characters

draft-ietf-drums-msg-fmt-05.txt

RF(C2112
RF(C1892

RFC2183

Draft for the successor of RFC822
The MIME Multipart/Related Content-type

The Multipart /Report Content Type for the Reporting of Mail System Admin-
istrative Messages

Communicating Presentation Information in Internet Messages: The Content-
Disposition Header Field

26

Emacs MIME Manual

Chapter 6: Index

6 Index

baseb4 ... 11
binhex 11
binhex-decode-region....................... 11

C

charsets........... 22
Chinesecovvieie i 12
CompoSINg . . oo v veee 19

D

date-leap-year-p il 9
date-to-time i 9
days-between 9
days-to-time.......... 9

H

ietf-drums-get-comment 8
ietf-drums-narrow-to-header................ 8
ietf-drums-parse-address 8
ietf-drums-parse-addresses 8
ietf-drums-parse-date....................... 8
ietf-drums-remove-comments 8
ietf-drums-remove-whitespace............... 8
interface functions oL 3

M

Macintosh........ L 11
mail-content-type-get....................... 3
mail-decode-encoded-word-region............ 5
mail-decode-encoded-word-string............ 5
mail-encode-encoded-word-buffer............ 5
mail-encode-encoded-word-region............ 5
mail-encode-encoded-word-string............ 5
mail-header-encode-parameter............... 4
mail-header-get-comment 4
mail-header-narrow-to-field................ 4
mail-header-parse-address 4

mail-header-parse-addresses 4

27
mail-header-parse-content-disposition..... 3
mail-header-parse-content-type............. 3
mail-header-parse-date 4
mail-header-remove-comments 4
mail-header-remove-whitespace.............. 4
mail-narrow-to-head......................... 4
mail-parse. 3
mail-parse-charset 22
mailcap-default-mime-data................. 12
mailcap-default-mime-extensions........... 13
mailcap-extension-to-mime 14
mailcap-mime-data................ 12
mailcap-mime-extensions 13
mailcap-mime-info....................... ... 13
mailcap-mime-types......................... 13
mailcap-parse-mailcaps 13
mailcap-parse-mimetypes 13
MIME Composingciiieeeaa. . 19
MIME Meta Language 19
mime-charset property....................... 22
mime-to-mml............... L 23
mm-attachment-override-types.............. 17
mm-automatic-display....................... 17
mm-automatic-display-p 16
mm-destroy-part, 16
mm-discouraged-alternatives............... 17
mm-display-part............. 16
mm-get-content-id............. 15
mm-handle-buffer........................... 15
mm-handle-disposition 15
mm-handle-encoding......................... 15
mm-handle-set-undisplayer................. 15
mm-handle-type 15
mm-handle-undisplayer 15
mm-inlinable-p............... 16
mm-inline-large-images-p.................. 17
mm-inline-media-tests 16
mm-inline-override-p....................... 17
mm-inlined-types................. ... 17
mm-interactively-view-part................ 16
mm-mime-mule-charset-alist 23
mm-pipe-partl 16
mm-remove-part, 16
MM-Save-Partcoooiuieiiiaa.. 16
MML ... 19
mml-generate-mime 19
mml-to-mime.......o o L 23
multibyte Emacs.......... o 22
P
parse-time-string................ 9

28

Q

quoted-printable-decode-region............ 10
quoted-printable-decode-string............ 11
quoted-printable-encode-region............ 11
quoted-printable-encode-string............ 11

R

rfel843. . 12
rfc1843-decode-region 12
rfc1843-decode-string 12
rfc2045-encode-string....................... 7
rfc2047-charset-encoding-alist............. 9
rfc2047-decode-region....................... 9
rfc2047-decode-string....................... 9
rfc2047-default-charset 8
rfc2047-encode-message-header.............. 9
rfc2047-encode-region....................... 9
rfc2047-encode-string....................... 9
rfc2047-encoded-word-regexp 9
rfc2047-encoding-function-alist............ 9
rfc2047-header-encoding-list 8
rfc2047-narrow-to-field 9
rfc2047-q-encoding-alist 9
rfc2231-encode-string....................... 7
rfc2231-get-value........................... 7

(Index is nonexistent)

Emacs MIME Manual

rfc2231-parse-string........................ 7

S

safe-date-to-time............................. 10
seconds-to-time 9
subtract-time................ 9

T

time-less-p ... 9
time-since 9
time-to-day........... 9
time-to-day-in-year 9
time-to-seconds 9

U

unibyte Emacs................... 22
uudecode. 11
uudecode-decode-region 11
uuencode. 11

X

XEmacs/Mule............ 23

Short Contents

Emacs MIME . . v v i vttt i et et eseesossessossessess 1
1 Interface FunctionS « « v v v v v v vt e e v e oo eeveeooneenas 3
2 BasicFunctions . v oo eveeeeeeoeeeeeoeeoosoosnnses 7
3 Decoding and Viewing . . o o v v v v v e e e eeeeenns 15
4 COMPOSINZ e o oo oo vveeeeeesssssssssssnoosssssss 19
H o oStandards o v v v v i ittt e e 25
6 Index v vveeeeeeeeeeeeesoesensoeseasoesocenoas 27

1

Emacs MIME Manual

Table of Contents

Emacs MIME.t inennnn. 1
1 Interface Functionscceevv.... 3
2 BasicFunctions..........c.uiteeiueeeennns 7
2.1 1c2045 . oo, 7
2.2 1IC2231 . 7
2.3 1etf-drumso 8
2.4 1IC2047 . 8
2.5 time-date. 9
2.0 gD e 10
2.7 basebd. 11
2.8 binhex ... 11
2.9 uudecode 11
210 rfcl843 .. 12
211 mailcapo 12
3 Decoding and Viewing 15
3.1 DISSECtionoot i 15
3.2 Handles 15
3.3 Display. ... 16
3.4 Customizationouiii 16
3.5 New VIewers. i 17
4 CompoSing......ovviiueeeeeeeseneanns 19
4.1 Simple MML Example.......... 19
4.2 MML Definition. 19
4.3 Advanced MML Example............................... 21
4.4 Charset Translation 22
4.5 CONVEISION . o o v vt e e e e e e e e 23
5 Standards.........c.iiiiiiiiiii i, 25
6 IndexXoviiiiiiii i, 27

iv

Emacs MIME Manual

